country_map = {'United States of America': 'United States',
'Dem. Rep. Congo': 'Congo, Democratic Republic of the',
'Dominican Rep.': 'Dominican Republic',
'Bahamas': 'Bahamas, The',
"Côte d'Ivoire": "Cote d'Ivoire",
'Central African Rep.': 'Central African Republic',
'Congo': 'Congo, Republic of the',
'Eq. Guinea' : 'Equatorial Guinea',
'eSwatini': 'Eswatini',
'Gambia': 'Gambia, The',
'Myanmar': 'Burma',
'South Korea': 'Korea, South',
'Turkey': 'Turkey (Turkiye)',
'Bosnia and Herz.': 'Bosnia and Herzegovina',
'S. Sudan': 'South Sudan'}
def replace_names(name):
if name in country_map.keys():
name = country_map[name]
return name
world['name'] = world['name'].map(replace_names).unique()
No tables found
No tables found
columns overlap but no suffix specified: Index(['Youth unemployment rate (ages 15-24)'], dtype='object')
keys = ['Real GDP (purchasing power parity)',
'Real GDP per capita',
'Current account balance',
'Exports',
'Imports',
'Reserves of foreign exchange and gold',
'Debt - external']
for key in keys:
world[key] = world[key].map(remove_dollar).astype(float)
<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 177 entries, 0 to 176
Data columns (total 55 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 pop_est 177 non-null float64
1 continent 177 non-null object
2 name 177 non-null object
3 iso_a3 177 non-null object
4 gdp_md_est 177 non-null int64
5 geometry 177 non-null geometry
6 Area 177 non-null float64
7 Population 177 non-null float64
8 Median age 177 non-null float64
9 Population growth rate 177 non-null float64
10 Birth rate 177 non-null float64
11 Death rate 177 non-null float64
12 Net migration rate 177 non-null float64
13 Maternal mortality ratio 177 non-null float64
14 Infant mortality rate 177 non-null float64
15 Life expectancy at birth 177 non-null float64
16 Total fertility rate 177 non-null float64
17 HIV/AIDS - adult prevalence rate 177 non-null float64
18 Obesity - adult prevalence rate 177 non-null float64
19 Alcohol consumption per capita 177 non-null float64
20 Tobacco use 177 non-null float64
21 Children under the age of 5 years underweight 177 non-null float64
22 Education expenditures 177 non-null float64
23 Youth unemployment rate (ages 15-24) 177 non-null float64
24 Real GDP (purchasing power parity) 177 non-null float64
25 Real GDP growth rate 177 non-null float64
26 Real GDP per capita 177 non-null float64
27 Inflation rate (consumer prices) 177 non-null float64
28 Industrial production growth rate 177 non-null float64
29 Labor force 177 non-null float64
30 Unemployment rate 177 non-null float64
31 Gini Index coefficient - distribution of family income 177 non-null float64
32 Budget surplus (+) or deficit (-) 177 non-null float64
33 Public debt 177 non-null float64
34 Taxes and other revenues 177 non-null float64
35 Current account balance 177 non-null float64
36 Exports 177 non-null float64
37 Imports 177 non-null float64
38 Reserves of foreign exchange and gold 177 non-null float64
39 Debt - external 177 non-null float64
40 Refined petroleum products - production 177 non-null float64
41 Refined petroleum products - exports 177 non-null float64
42 Refined petroleum products - imports 177 non-null float64
43 Carbon dioxide emissions 177 non-null float64
44 Energy consumption per capita 177 non-null float64
45 Telephones - fixed lines 177 non-null float64
46 Telephones - mobile cellular 177 non-null float64
47 Internet users 177 non-null float64
48 Broadband - fixed subscriptions 177 non-null float64
49 Airports 177 non-null float64
50 Railways 177 non-null float64
51 Roadways 177 non-null float64
52 Waterways 177 non-null float64
53 Merchant marine 177 non-null float64
54 Military expenditures 177 non-null float64
dtypes: float64(50), geometry(1), int64(1), object(3)
memory usage: 76.2+ KB