Geographic Information Systems

ESM 263 - Winter 2023

Coordinate Systems and Map Projections

Outline

- Introduction
- Latitude and longitude
- Projections and coordinate systems
- Cadasters
- Postal addresses and postal codes
- Placenames
- Converting georeferences

Georeferencing

Linking information to specific locations

- Unique location = f (georeference)
- Shared means the same thing to everybody
- Persistent means the same thing tomorrow

Types of Georeferences

- Nominal Placenames
- Ordinal street addresses (in some of the world, anyway...)
- Interval or Cyclic linear or angular distance from fixed places e.g. from Equator or Greenwich Meridian

Geographic Coordinates

- Spherical coordinates
 - Latitude
 - Longitude
- Defined by
 - Center of mass
 - Equator = f(rotation)
 - Zero meridian = f(politics)
- Spherical Earth
 - o R≈6371 km
 - A ≈ 510 000 000 km²

Latitude and Longitude

- Latitude angle from equator (+ = N) on meridional plane
- Longitude angle from prime meridian (+ = E) on equatorial plane

© Encyclopædia Britannica, Inc.

Prime Meridian at Greenwich, UK

Earth Isn't Round (nor is it flat ...)

- Closer to an ellipsoid than a sphere
 - an ellipse rotated about its minor axis
 - centrifugal "bulge" → N-S diameter ~ 1/300 less than E-W
- Example: WGS 84 ellipsoid
 - Radius at Equator: 6378.137 km
 - Flattening: 1/298.257

• Datum:

model of the Earth as an ellipsoid

- o dimensions (radii, flattening)
- location (center \leftrightarrow center of Earth)
- orientation (semi-minor axis ↔ Earth axis)

Why Different Datums?

- Before GPS: many
 - Each country used "local best fit" ellipsoid
 - US: North American Datum of 1927 (NAD27)
 - Clarke 1866 ellipsoid
 - tangent to surface at <u>Meades Ranch, KS</u>
 - US: North American Datum of 1983 (NAD83)
 - GRS 1980 ellipsoid (Earth-centered)
 - up to 200 m displacement from NAD27 (in US)
- Since GPS: WGS 84
 - Earth-centered ellipsoid
 <1 m offset from NAD 83 (in US)

What Can Happen If You Ignore Datums

USS LA MOURE COUNTY ran aground in Caleta Cifuncho Bay, Chile after navigating with GPS (WGS-84 datum) on a local chart with a local datum.

Projections

Why project Earth's surface onto plane?

- See whole Earth surface at once
- GIS \leftrightarrow maps/displays
 - scan, digitize
 - print, plot
- Much easier to measure distance
- Represent Earth surface as a rectangular grid (we'll talk more about this in the "raster" section...)

Cylindrical Projection Example: Mercator

Turning the cylinder:

- Standard
- Oblique
- Transverse

Cylindrical Projection Example: Transverse Mercator

UTM Coordinates

- X: easting (meters east)
 Y: northing (meters north)
- X = 500 km @ central meridian
 "false easting": makes all X's in the zone positive
 - Y = 0 @ Equator
- Eastings and northings are both in meters allowing easy distance calculation
- UTM georeference
 - zone number
 - six-digit easting
 - seven-digit northing
 - e.g.: 11, 397900 E, 4922900 N

UTM Zones: Implications

- Each zone is a different projection
- Adjacent zones won't fit along border
- What about areas that span zones?
 - Either: pick 1 zone; accept >normal distortions in other zone
 - Or: use other projection that spans area
 - E.g. CA (zones 10 & 11) UTM zone "10.5"
 - "California Albers" (equal area conic)

Conic Projection Example: Lambert Conformal Conic

"Unprojected" Projection: Plate Carrée / Equirectangular projection

Distortion

- All projections distort the Earth in some way
- Which is most important? (Pick one)
 - Shape? Use conformal projection
 →Distortion same in all directions
 - Area? Use equal area projection
 - \rightarrow Distorts shapes to preserve area

(No projection has both of these properties.)

- (And maybe add)
 - Distance? Use equidistant projection
 - Only from 1 or 2 points, or along 1 line.

Which projection should I use?

- For data
 - generally: equal-area so calculations and comparisons make sense
 - specifically: whatever your project/client already uses so you don't waste time/effort converting stuff
- For maps
 - generally: whatever's most familiar to the map's users
 - Specifically:
 - conformal: if it's most important to recognize shapes
 - equal-area: if it's most important to compare sizes
 (The smaller the area, the less important this distinction is.)

Cadasters

- Land ownership (property boundary) maps
- US Public Land Survey System (PLSS)
 - Georeferences local cadasters
 - esp. in western US: Natural resources
 - Similar systems in other countries

Placenames

- Earliest form of georeferencing most commonly used in everyday activities
- Work at many different scales continents → villages → neighborhoods
- Evolve
 - $\circ \quad \mathsf{Peking} \to \mathsf{Peip'ing} \to \mathsf{Beijing}$
 - Taprobane \rightarrow Ceylon \rightarrow Sri Lanka
 - <u>Poland ...</u>

Uniqueness: Which One?

• Domain-specific

- many instances of "Springfield" in the U.S.
- but only one per state
- Context-specific
 - Paris, France vs Paris, Texas

Postal Address as Georeference

- Works if mail destination (dwelling, office, ...)
 - is unique along: Street name
 - is unique within: Local area (city, county, ...)
 - is unique within: Region (state, province, ...)
- but not for...
 - Rural areas:

e.g.: Star Route 1 Box 198 (now: 1016 Mt. Morrison Rd.)

- Natural features (lakes, mountains, rivers, ...)
- Non-sequential street addresses
 - e.g. Japan

Postcodes as Georeferences

• Defined in many countries

- US ZIP codes
- UK postcodes
- Hierarchically structured
 - Leading characters \rightarrow large areas
 - Trailing characters \rightarrow smaller areas

• vs. postal address?

- Ubiquitous
- Less precise

Converting Georeferences

- Projection: Transform coordinates to new projection QGIS:
 - Working with Projections
 - Reproject layer
- Geocoding
 – Convert street addresses to coordinates (US Census)
- Gazetteer: database of place = (name, location, type)
 - U.S. Board on Geographic Names
 - GeoNames

Alternative Georeferencing

- <u>What3Words</u>
- STARE

