Geographic Information Systems

ESM 263 - Winter 2023

Vector Data

Why Vector Data?

- Recall: features vs fields
 - features: discrete entities with specific locations
 - \circ fields: continuous functions of (x, y)
- "Vector" is GIS-speak for feature representations
 - dimensionality: point, line, area
 - topology: preserve/ignore connectivity
 - simple vs. composite

Simple Features

Dimensionality

- 0: point
- 1: line
- 2: area

Composition

- line: sequence of points:
 - implicitly connected
- area: sequence of lines
 - boundary
 - implicit or explicit closure

Simple Features

Georelational Data Model

Lines

ID	Name		
1	Tuckaseegee River		
2	Pigeon Branch		
3	Poplar Run		
4	Shope Fork		
5	Mel's Brook		
6	Merdesansrame Creek		
7	Longue Arm		
8	Arroyo Grande		

Polygons

ID	Building Name	Floors	Roof Type
1	Hodson Hall	6.0	flat, sealed tar
2	Borlaug Hall	5.5	pitched 9/12, tile
3	Guilford Technology Bldg.	4.0	flat, gasket
4	Shop Annex	2.5	flat, sealed tar
5	Animal Sciences Bldg.	1.0	pitched 12/12, tile
6	Administration Bldg.	14.0	pitched 6/12, meta
7	Climate Sciences Center	6.0	flat, sealed tar
8	Grantham Tower	1.0	pitched 9/12, tile
9	Biological Sciences Bldg.	9.0	pitched 12/12, tile

• Separation of geometry and attributes

- \circ related by feature ID
- May or may not represent topology (connectivity)
 - explicit topology: coverage (obsolete, but still used)
 - o no topology: shapefile

Non-Topological Vector Data

- Lists of simple features
 - o no explicit connectivity: features that share geometry, duplicate the geometry
- Advantages
 - easier to draw/display: don't have to look up arcs
 - simpler file formats
 - easier to extract subsets of features
- Disadvantages
 - can't tell if duplicate geometry is shared geometry
 - editing features with shared geometry can introduce inconsistencies:
 e.g. boundary between counties

Shapefile

- foo.shp
 - Geometry:
 - feature ID: coordinate list
- foo.shx
 - geometry index
 - feature ID: offset in bytes: from beginning of foo.shp
- foo.dbf
 - Attributes:
 - feature ID: attributes...
- foo.prj
 - o coordinate system: geographic/projected
- foo.xml
 - Metadata
- foo.{anything else}:
 - (probably ESRI-specific)

Databases

- Layers = database tables
 - geometry stored directly in the database
- GeoPackage
 - file containing SQLite database
 - ".gpkg" filename extension
 - open standard: anyone can implement it
- Geodatabase
 - folder containing database tables as files
 - ".gdb" folder name extension
 - ESRI proprietary
 - file format / database schema not documented
 - QGIS can read (sometimes) but not write

WKT/WKB

- POINT: POINT(123.45 543.21)
- LINESTRING: LINESTRING(100.0 200.0, 201.5 102.5, 1234.56 123.89)
- POLYGON:

- **POLYGON((101.23 171.82, 201.32 101.5, 215.7 201.953, 101.23 171.82))** exterior ring, no interior rings
- POLYGON((10 10, 20 10, 20 20, 10 20, 10 10), (13 13, 17 13, 17 17, 13 17, 13 13)) exterior ring, one interior ring
- MULTIPOINT: MULTIPOINT(1234.56 6543.21, 1 2, 3 4, 65.21 124.78) three points
- MULTILINESTRING: MULTILINESTRING((1 2, 3 4), (5 6, 7 8, 9 10), (11 12, 13 14)) first and last linestrings have 2 vertices each one; the second linestring has 3 vertices

Spatial Relations

- 1. Equals
- 2. Disjoint
- 3. Touches
- 4. Contains
- 5. Covers
- 6. Intersects
- 7. Within
- 8. Covered by
- 9. Crosses
- 10. Overlaps

Point-in-Polygon test (ray-casting)

Point-in-Polygon test (winding number)

Vector Data Operations

- Buffering
- Overlay
- Editing

Proximity

- Buffering
 - feature of interest + distance $D \rightarrow Buffer \rightarrow region w/in D vs region beyond D$
 - w/in distance D? = w/in buffer?

• Ubiquitous in GIS

- \circ exclusion zone
- impact area
- uncertainty
- etc...

.

Buffering

Variable Distance Buffers (e.g. stream gradients)

Concentric Buffers E.g. distance from well

Buffering with Dissolve

- Dissolve = remove overlap
 - Useful if same process governs creation of all the buffers
 - turns "each area" into "all areas"
- e.g. "drug-free school zone"
 - "No drugs here"
 more important than
 "no drugs near school X"

Overlay

Combine feature layers

- New_Layer = Layer_1 {op} Layer_2
 - new geometry based on intersection of old geometries
 - old attributes distributed over new geometry
- Example: polygon AND polygon

Overlay: Point-in-Polygon

- Points receive attributes of containing polygon
- ... not the reverse: why?
 - hint: what if >1 point in a polygon...

Overlay: Line-in-Polygon

- Old line \rightarrow 2 new lines
 - 1 per polygon
- New lines receive attributes of containing polygon

Overlay: Polygon-on-Polygon

Polygons broken up as needed so attributes distribute correctly

Overlay Operations

- Intersection
- Union
- Symmetrical Difference
- Difference
- Identity
- Update

Intersection (AND)

- only areas common to both input layers
- output = input AND intersect

Union (OR)

- All areas from both input layers
- output = input 1 OR input2 (OR: inclusive "or" 1 or 2 or both)

Symmetrical Difference (XOR)

- Only areas unique to 1 input layer
- output = input_1 XOR input_2 (XOR: exclusive "or" 1 or 2 but not both)

Difference

- Like symmetrical difference, but only keeps input layer
- output = (input XOR erase) AND input

Identity

- Like intersect, but keeps all of 1st input layer
- output = (input AND identity) OR input

Update

- Like difference, but keeps update layer
- output = ((input XOR update) AND input) OR update

Vector Editing Operations

- Apply combinations of ...
 - overlay operators
 - attribute queries
- ... to create new feature layers
- Dissolve
- Clip
- Merge
- Select
- Eliminate

Dissolve

- Combine adjacent polygons based on shared attribute value
- i.e. remove unnecessary boundaries
 - simplifies analysis
 - smaller dataset

Clip

- "Cut out" input layer using feature(s) from clip layer
- Think "stencil" ...

Merge

Combine Vector Datasets

Select

Extract selected features into new layer

Eliminate

- Get rid of "spurious" polygons...
 - e.g. digitization errors
- ... by merging into neighbors
 - Largest
 - Longest common boundary

Graphics Credits

- Introduction to Geographic Information Systems, 5/e
- ArcMap Help
- GIS Fundamentals, 6/e