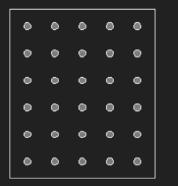
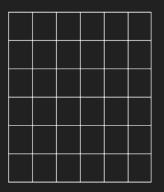
Geographic Information Systems ESM 263 - Winter 2023

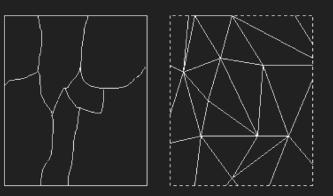
Raster Data

Vector Data Review

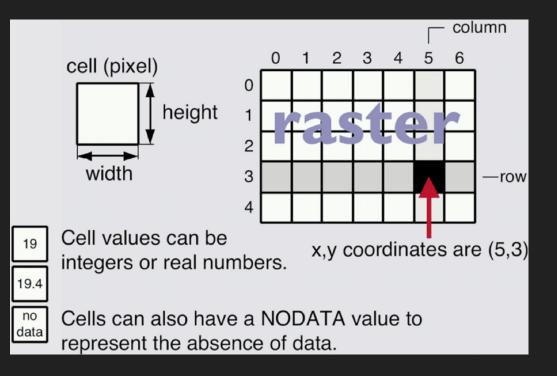

- discrete objects
- geometry = points
 - by themselves
 - \circ connected \rightarrow lines
 - \circ closed \rightarrow polygons
- attributes linked to feature ID
- explicit location
 - every point has coordinates

Fields in GIS


- continuous f(x, y)
- so how represent
 - Geometry?
 - Attributes?
 - Location?

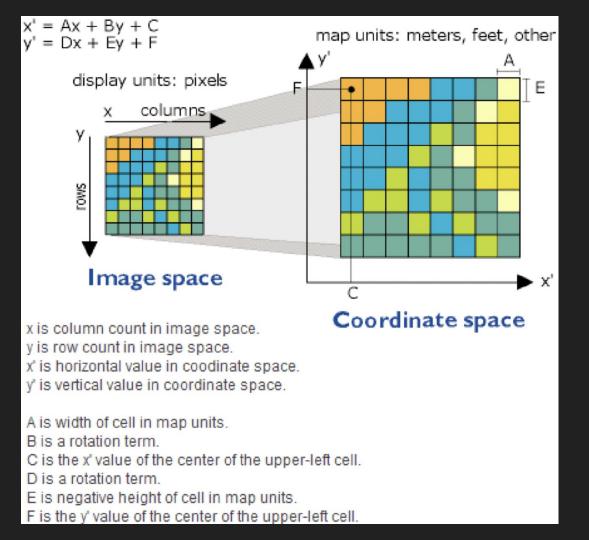

Approximating Fields

- Point set
 - Regular
 - Irregular
 - Grid
- Polygons
- TIN
- Contours



Sampled Fields: Rasters

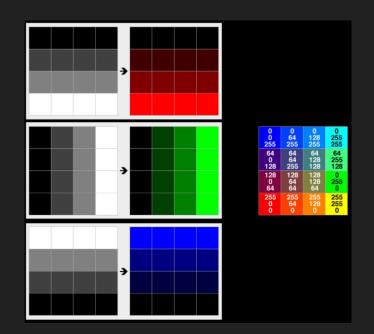
- Divide (part of) the world into square cells (aka pixels)
- Register the corners to the Earth
- Represent fields by assigning field values to cells
- Represent discrete objects as collections of one or more cells
- More commonly used to represent fields than discrete objects


Raster Data Model

- Cell size defines level of spatial detail
 - all variation within cells is lost
 - $rightarrow \downarrow \rightarrow \uparrow \# cells \rightarrow \uparrow data volume$
- Cell value (field value w/in cell)
 - average? total? Modal?
 - central point?
- Implicit geometry
 - grid cell (pixel) coordinates

Raster Coordinates

- Convert raster (row, column) to map (x, y) using <u>affine transform</u>
- transform parameters may be saved in "world file"
 - or embedded in raster formats like GeoTIFF

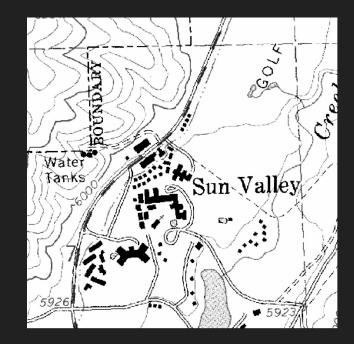

Characteristics of Rasters (cont'd)

Bands (channels)

- single ("binary") ۲ 0 0 0 0 1 0 0 1 1 ۲ Û Ο 0 0 0 0 0 1 O
- single ("grayscale")

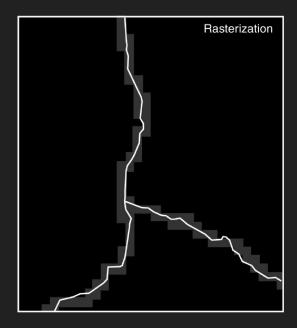
68	124	0	170	86	0
234	187	68	251	10	236
76	124	218	132	201	66
124	16	118	183	32	255
126	191	198	251	141	56
41	255	243	162	212	152

• multiple

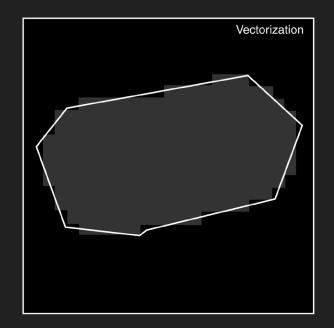


Raster Examples

aerial image

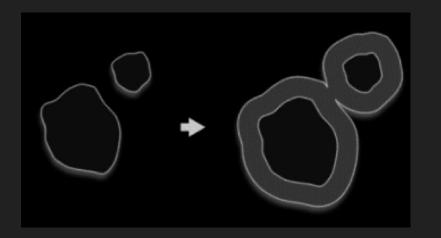


scanned topo map



Vector ↔ Raster Conversion

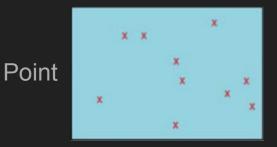
Rasterize = cells that intersect feature

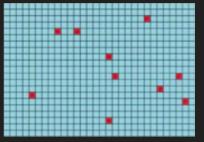


Vectorize = outline contiguous region

Note: Distance vs Buffering

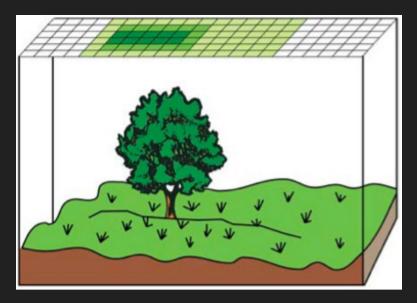
Buffer: discrete




Distance: continuous

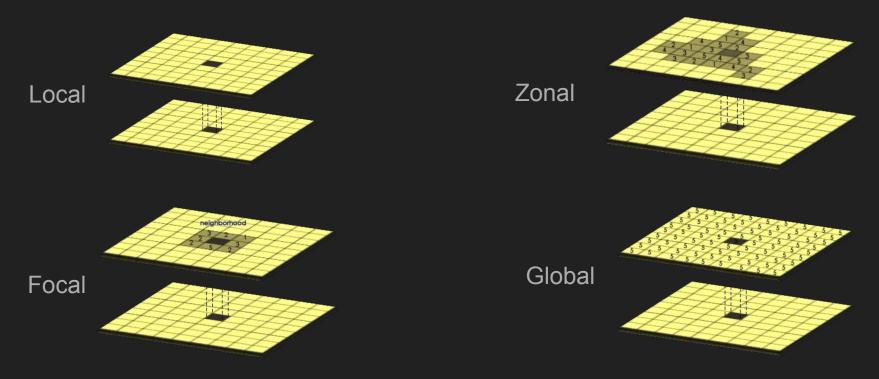
Feature Representation in Rasters: Sub-pixel Features Coarsened

Raster


Polygon

Feature Representation in Rasters: Large Features Blurred

Tree represented as varying values of "treeness", instead of as a crisp feature

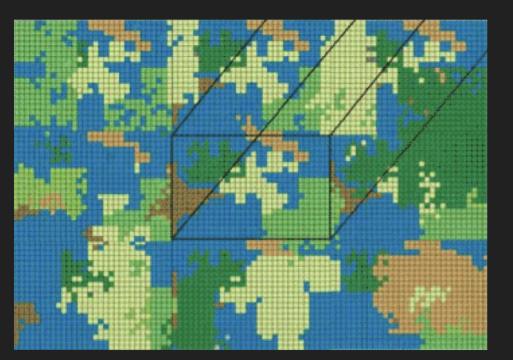


Raster Operations

in order of increasing #input cells contributing to 1 output cell

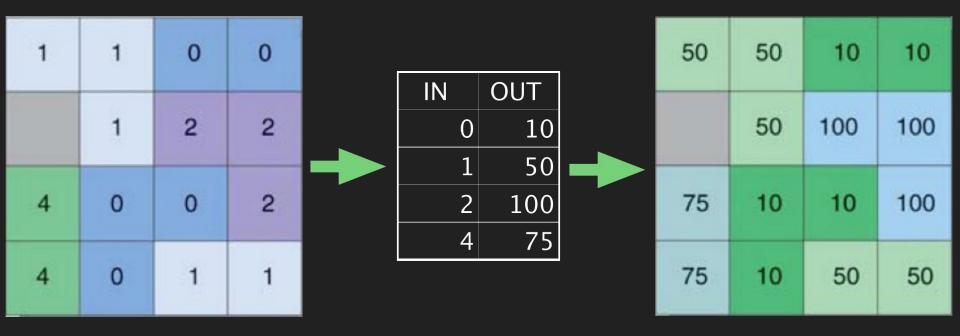
- Local
- Focal
 - aka neighborhood
- Zonal
- Global

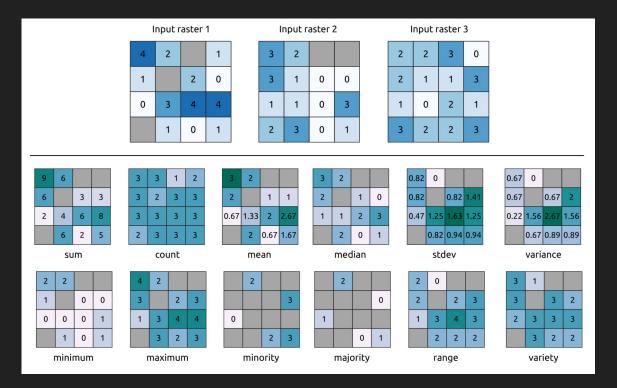
Raster Operations



Extent

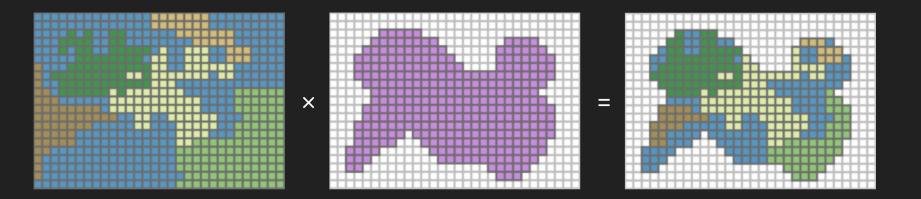
restrict processing to rectangular subset


- explicit: (xmin, ymin, xmax, ymax)
- default: bounding box of inputs

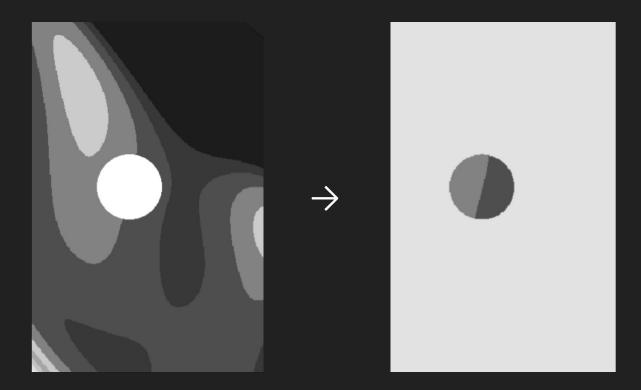


Local Operation Example: 1 Input

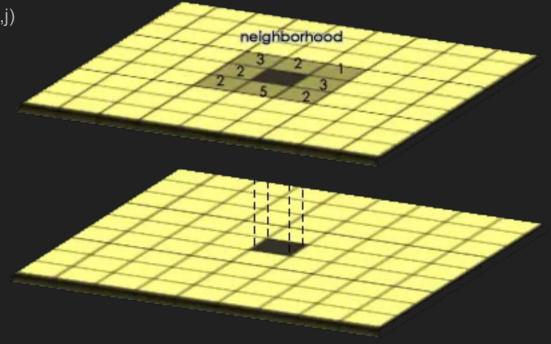
Reclassify (change values using lookup table)


Local Operation Example: Multiple Inputs

shaded = NoData


NB: NoData in any input \rightarrow NoData in output

Local Operation Example: Mask


- $1 \rightarrow pass$
- $0 \rightarrow 0$
- NoData \rightarrow NoData

Extract (Clip raster by mask layer (vector))

Focal (Neighborhood) Operations

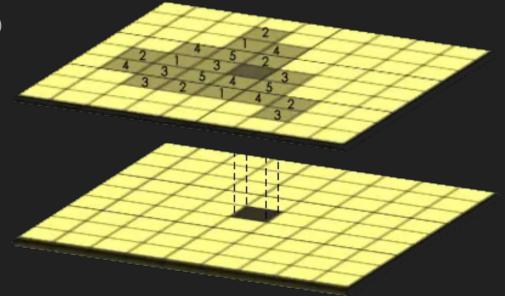
- $out(xi, yj) = f(in(xk, ym) \forall k, m near i,j)$
 - single cell and its neighbors
- Examples
 - Smooth (sharpen)
 - Noise suppresion
- Think of as
 - Weighted sum or sort and pick

Focal Operation Example: Mean

b = 3x3 mean(a)

e.g. (2+2+2+2+1+3+2+2+3) / 9 = 2.11

	1	2	2	2	2
	1	2	2	2	3
a)	1	2	1	3	3
	2	2	2	3	3
	2	2	2	2	3


1.56	2.00	2.22
1.67	2.11	2.44
1.67	2.11	2.44

(b)

Zonal Operations

out(xi, yj) = $f(in(xk, ym) \forall k,m \exists zone(xk, ym) = zone(xi, yj))$

- like focal, but uses zone for neighborhood
- replace cell value with some property of its neighbors in zone it overlaps

Zonal Operation Example: Zonal Mean

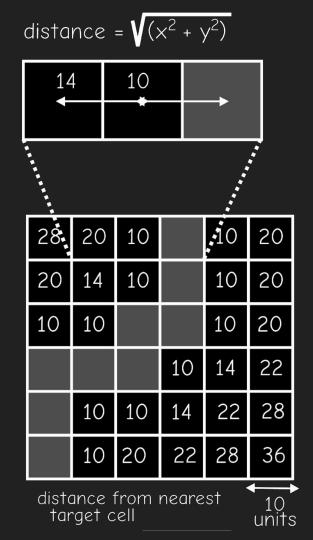
1	2	2	1	1	1	2	2	2.17	2.17	2.25	2.25
1	4	5	1	1	1	2	2	2.17	2.17	2.25	2.25
2	3	7	6	1	1	3	3	2.17	2.17	4.17	4.17
1	3	4	4	 3	3	3	3	4.17	4.17	4.17	4.17

Input

zones

zonal mean (input,zones) e.g. 2.17 = mean(zone 1: {1, 2, 1, 4, 2, 3})

Zones Can Be Discontiguous


Zone = all cells with same value

2	1	4	4	4	1
2	2	1	5	5	1
2	2	1	5	5	1
1	2	4	1	2	1
3	3	3	1	2	1
1	1	3	4	4	4

Zonal Operations in QGIS

• supported statistics

- majority, median, minority
- maximum, range, minimum
- sum, mean, standard deviation
- count, variety (# distinct values)
- zonal operations produce tables, not rasters
 - row = zone
 - \circ column = statistic
- input zones can be a vector layer
 - output is a vector layer with zonal stats added to attribute table

Global Operations: Proximity

Euclidean distance to nearest target value(s)

Figure Credits

- ArcGIS 9: Using ArcGIS Spatial Analyst
- ArcMap Help
- Geographic Information Systems and Science, 2nd ed. ISBN 978-0470870013
- GIS Fundamentals, 6th ed. ISBN 978-1-59399-552-2
- GISGeography.com
- Introduction to Geographic Information Systems, 4th ed. ISBN 978-0-07-305115-2
- Modeling Our World. ISBN 1-879102-62-5